Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Digit Health ; 5: 1304089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38351963

RESUMO

Background: Mobile e-health technologies have proven to provide tailored assessment, intervention, and coaching capabilities for various usage scenarios. Thanks to their spread and adoption, smartphones are one of the most important carriers for such applications. Problem: However, the process of design, realization, evaluation, and implementation of these e-health solutions is wicked and challenging, requiring multiple stakeholders and expertise. Method: Here, we present a tailorable intervention and interaction e-health solution that allows rapid prototyping, development, and evaluation of e-health interventions at scale. This platform allows researchers and clinicians to develop ecological momentary assessment, just-in-time adaptive interventions, ecological momentary intervention, cohort studies, and e-coaching and personalized interventions quickly, with no-code, and in a scalable way. Result: The Twente Intervention and Interaction Instrument (TIIM) has been used by over 320 researchers in the last decade. We present the ecosystem and synthesize the main scientific output from clinical and research studies in different fields. Discussion: The importance of mobile e-coaching for prediction, management, and prevention of adverse health outcomes is increasing. A profound e-health development strategyand strategic, technical, and operational investments are needed to prototype, develop, implement, and evaluate e-health solutions. TIIM ecosystem has proven to support these processes. This paper ends with the main research opportunities in mobile coaching, including intervention mechanisms, fine-grained monitoring, and inclusion of objective biomarker data.

2.
JMIR Cancer ; 8(3): e37502, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916691

RESUMO

BACKGROUND: Psychosocial eHealth interventions for people with cancer are promising in reducing distress; however, their results in terms of effects and adherence rates are quite mixed. Developing interventions with a solid evidence base while still ensuring adaptation to user wishes and needs is recommended to overcome this. As most models of eHealth development are based primarily on examining user experiences (so-called bottom-up requirements), it is not clear how theory and evidence (so-called top-down requirements) may best be integrated into the development process. OBJECTIVE: This study aims to investigate the integration of top-down and bottom-up requirements in the co-design of eHealth applications by building on the development of a mobile self-compassion intervention for people with newly diagnosed cancer. METHODS: Four co-design tasks were formulated at the start of the project and adjusted and evaluated throughout: explore bottom-up experiences, reassess top-down content, incorporate bottom-up and top-down input into concrete features and design, and synergize bottom-up and top-down input into the intervention context. These tasks were executed iteratively during a series of co-design sessions over the course of 2 years, in which 15 people with cancer and 7 nurses (recruited from 2 hospitals) participated. On the basis of the sessions, a list of requirements, a final intervention design, and an evaluation of the co-design process and tasks were yielded. RESULTS: The final list of requirements included intervention content (eg, major topics of compassionate mind training such as psychoeducation about 3 emotion systems and main issues that people with cancer encounter after diagnosis such as regulating information consumption), navigation, visual design, implementation strategies, and persuasive elements. The final intervention, Compas-Y, is a mobile self-compassion training comprising 6 training modules and several supportive functionalities such as a mood tracker and persuasive elements such as push notifications. The 4 co-design tasks helped overcome challenges in the development process such as dealing with conflicting top-down and bottom-up requirements and enabled the integration of all main requirements into the design. CONCLUSIONS: This study addressed the necessary integration of top-down and bottom-up requirements into eHealth development by examining a preliminary model of 4 co-design tasks. Broader considerations regarding the design of a mobile intervention based on traditional intervention formats and merging the scientific disciplines of psychology and design research are discussed.

3.
Front Hum Neurosci ; 14: 609096, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505259

RESUMO

A lot of research has been done on the detection of mental workload (MWL) using various bio-signals. Recently, deep learning has allowed for novel methods and results. A plethora of measurement modalities have proven to be valuable in this task, yet studies currently often only use a single modality to classify MWL. The goal of this research was to classify perceived mental workload (PMWL) using a deep neural network (DNN) that flexibly makes use of multiple modalities, in order to allow for feature sharing between modalities. To achieve this goal, an experiment was conducted in which MWL was simulated with the help of verbal logic puzzles. The puzzles came in five levels of difficulty and were presented in a random order. Participants had 1 h to solve as many puzzles as they could. Between puzzles, they gave a difficulty rating between 1 and 7, seven being the highest difficulty. Galvanic skin response, photoplethysmograms, functional near-infrared spectrograms and eye movements were collected simultaneously using LabStreamingLayer (LSL). Marker information from the puzzles was also streamed on LSL. We designed and evaluated a novel intermediate fusion multimodal DNN for the classification of PMWL using the aforementioned four modalities. Two main criteria that guided the design and implementation of our DNN are modularity and generalisability. We were able to classify PMWL within-level accurate (0.985 levels) on a seven-level workload scale using the aforementioned modalities. The model architecture allows for easy addition and removal of modalities without major structural implications because of the modular nature of the design. Furthermore, we showed that our neural network performed better when using multiple modalities, as opposed to a single modality. The dataset and code used in this paper are openly available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...